Younger-Dryas Period–Mystery Solved?

Copyright.PNG

Starting in about 13,000 (BCE) the Earth experienced three major climatic catastrophes–one after another; i.e. (Bölling-Allerød, Younger-Dryas and Pre-boreal warming periods). They are described here as catastrophic because that 1-2-3 punch is said to have annihilated a significant percentage of life on Earth.

Ice-Core1.PNG
Click on image to enlarge
  • The Bölling-Allerød interstadial was a sudden, intense, climatic warming (~12° C; ~21° F) period which caused dramatic melting of large Ice Age ice sheets that covered Canada and the northern U.S., all of Scandinavia, and much of northern Europe and Russia. Sea level that had been 120 m (~400 ft) lower than present rose quickly and submerged large areas that had been dry land during the Ice Age. This warming occurred abruptly in only a few years (Steffensen et al., 2008). This warm period ran from c. 12,800 to c. 10,900 (BCE). It ended abruptly with the onset of the Younger Dryas.
  • The Younger-Dryas was a cold period that reduced temperatures back to near-glacial levels within a decade. It began about 10,900 (BCE) when global temperatures plunged sharply (~8°C; ~14° F), sparking a 1200-year period of glacial re-advance. Its end came abruptly with the onset of Pre-boreal warming about 9,700 (BCE).
  • Pre-boreal warming began about 9,700 (BCE) when, almost overnight, global temperatures rose parabolically (~12° C; ~21° F), marking the end of the Younger Dryas cold period and the end of the Pleistocene Ice Age. The peak rise in temperatures was reached about 9,500 (BCE) 
    

There has been an abundance of speculation as to the cause of these events (even a book or two) but no one has offered an explanation that ties all three events together. This article argues that all three events may have a physical cause and, if so, their timing may be predictable. The supposition is presented in a logical, well laid-out, manner and is supplemented with ample charts and diagrams. The analysis begins by identifying the underlying motion that is believed to cause the precession of the equinoxes and then introduces a series of harmonic structures that may provide an answer for the abrupt shifts in temperatures occurring between 13,000- and 9,500 BCE (video).

The precession of the equinoxes is the observable phenomena of the rotation of the heavens around the Earth–a cycle that is said to span a period of (approximately) 25,920 years (Platonic year).

The cause of the precession of the equinoxes remains a hotly debated topic. At the heart of the debate is the source of the underlying motion that cause the equinoxes to precess. I believe that motion is a cycle of 80-years and that apsidal precession is the phenomena that produces the 25,920-year precession cycle.

Apsidal or orbital precession is the gradual rotation of the line joining the apsides of an elliptic orbit which are the points of its closest and farthest approach. For the 80-year cycle, the closest point to its center of rotation is “A” (79.753846153-years). The farthest point is “B” (80.24767802-years). Therefore, a mean orbital period of 80-years.

Apsidal Motion

Precessing_Kepler_orbit_280frames_e0.6_smaller

Apsidal motion is like the winding of a clock; the spring is wound by synodic interaction of its two components. Therefore, the spring winds 162.5 turns in one direction (high-potential) and then, unwinds for another 161.5 turns in the other direction (low-potential). The combined synodic motion of 324 turns or orbits is the foot print of the Platonic-year; i.e. (25,920-years), a period commonly associated with precession.

Ancient Mayan Creation Cycles–The Connection

The ancient Maya called themselves the children of the Sun with the Moon being the mother and the Sun the father. They are widely acknowledged as gifted astronomers and were without equal when it came to calendar making. But, rather than using just one calendar, as we do today, the Maya used several calendars—simultaneously—which were all magically integrated into one grand timekeeping system.

Long-Count-Integration2

Ancient Mayan Integrated Timekeeping System

Their timekeeping system was mechanical in nature and consisted of four intermeshing gears (like what you would find in a pocket watch) and, as the primary calendar is advanced by one day, the others updated themselves proportionately. They were not so much interested in time–their primary focus was timing.

For each of the calendars they built a mathematical model in the form of a stone pyramid which was impervious to the passing of time and able to withstand the cataclysmic forces of nature… the only way of insuring the long-term survival of their sacred technologies.

Mayan cycles are all harmonic derivative’s of the Pleiades cycle which consists of 26,000-tuns (360-day years). Interestingly, the 26,000-tun cycle is also the approximate period of the precession of the equinoxes. Therefore, from the Pleiadean perspective, the Sun would appear to make one full revolution around Alcyone (the central star of the Pleiades group) every 26,000-tuns or 9,360,000-days.

The following illustration shows the two primary intervals of time that makeup the Pleiades cycle. 1. 26,000 /4 = 6,500 Mayan years and 2. 26,000 /5 = 5,200 Mayan years or the 4th and 5th harmonics. The 6,500 year periods define the galactic alignment. The 5,200 year periods are said to be cycles of creation. Naturally, creation implies an ending.

Pleiades-Cycle.PNG

On close inspection of the 26,000 year cycle you’ll see that the cycle oscillates back and forth between 26,000 and 25,840 years with a mean of 25,920 Mayan years (below).

Mayan-Harmonics

Therefore, the simulation values used in our mathematical model are 6,480 and 5,184 instead of 6,500 and 5,200. Before a simulation of the interactions between the two cycles can be run, however, a start date or end date for the cycles is required. And, there’s only one date that Mayan scholars generally agree on and that is -3112 or -3113 BCE. So, the date chosen for the model was -3/21/3112 BCE. By simply adding 5,184 the calculated end date is 2,072 AD.

The chart below shows the simulated interactions of vibrational frequency  patterns created by the two cycles over a period of 16,000-years–ending in 2072 AD. For context, the results of the calculations are overlaid with Ice-Core temperature data for the same period of time. The apparent correlations between the two cycles and abrupt changes in temperature, such as occurred during the Bölling-Allerød, Younger-Dryas and Pre-boreal periods are striking.

S2XX.PNG
Click on picture to enlarge

As you can see in the close-up below, the chart leaves little room for doubt that the two cycles are somehow linked to abrupt climate shifts (red dotted lines).

X01.PNG

Click on image to enlarge

Apparent Correlations

Temperature turning-points appear to correlate with wave amplitudes of +100% or -100% or 0% and, when the waves cross each other’s path. The data has not been manipulated in any way. The cycle components are simply responding to a common ending date of 2072 AD. The sinewave calculations simply work backwards from that point.

How did they know?

 

Published by

The Ancient Astronomer

For the last thirteen years my full-time job has been investigating, what the scientific community refers to as, incredible coincidences. It’s kind of like putting together a really big puzzle. In the beginning the number of potential matches is bewildering. But, over the years, a few pieces of the puzzle fall into place and you begin to get a small glimpse of what the big picture may look like. Eventually, impressions are formed and at some point, those impressions need to be shared. That's what this website is all about--a platform for sharing impressions. Each post will pertain to one of the "incredible coincidences" or "unknowable".

Leave a Reply